Absorption of sound, see Sound absorption
ACGIH, see American Conference of Governmental Industrial Hygienists
Acoustical data, 43
Acoustical enclosures, 521–552. See also Small enclosures, sound in
close-fitting, sealed, 531–537
for cooling towers, 667
defined, 517
for feed pumps, 672
for industrial gas turbines, 673
intermediate-size, 537–538
large, with interior sound-absorbing treatment, 540–551
effect of sound-absorbing treatment, 547, 548
flanking transmission through floor, 549, 550
inside-outside vs. outside-inside transmission, 549–550
key parameters influencing insertion loss, 544–545
leaks, 547, 548
machine position, 549
machine vibration pattern, 549
model for insertion loss at high frequencies, 541–544
wall panel parameters, 545–547
large, without internal sound-absorbing treatment, 538–540
partial, 551–552
performance of:
insertion loss as measure for, 522–523
measures for, 518–519
qualitative description, 523–525
size of, 521
small, sealed, 525–531
for transformers, 679
Acoustical engineers, 345
Acoustical impedance, 40
Acoustically induced vibrations and rattles, 905, 907
Acoustical modal response, 149–151
Acoustical privacy, 203–204. See also Speech privacy
Acoustical standards, see Standards
Acoustical terminology, 911
Acoustical wave equation, 149
Active machinery isolation, 840–845
Active noise and vibration control (ANVC), 721–849
actuators:
locations of, 806–808
number of, 804–806
placement and selection of, 722–730
sizing of, 808–809
controller architecture and performance simulations, 814–817
control sensors/architectures, 730–732
design considerations, 800–801
digital filters, 740–751
adaptive design for, 749–751
advantages of, 740–741
description of, 741–747
optimal design for, 747–749
feedback control systems, 779–800
alternate suboptimum control filter estimation, 784–800
basic architecture, 779–781
optimal control filter estimation, 781–784
feedforward control systems, 751–779
adaptive control, 760–765
basic architecture, 751–754
control of aliasing effects, 765–769
extension to MIMO systems, 777–779
optimal control filter estimation, 754–760
system identification, 769–777
hardware selection, 817–827
identifying performance goals for, 801–804
implementation and testing of, 827–829
performance expectations, 732–733
placement and selection of control sources/actuators, 722–730
prototype ANVC systems, 733–740
active machinery isolation, 840–845
airborne noise in high-speed patrol craft, 845–849
MIMO feedforward active locomotive exhaust with passive component, 829–840
sensors:
control sensors/architectures, 730–732
number/location of, 809–814
performance of, 813–814
reference, 809, 812–813
residual, 809–812
Active noise control silencers, 280
Actuators (ANVC):
locations of, 806–808
number of, 804–806
placement and selection of, 722–730
sizing of, 808–809
Actuator channels, 806
Adaptive control algorithm, 760–765
A/D converters, see Analog-to-digital converters
Added mass, 348, 355, 383–384
Added mass coefficient, 348
Added mass/fluid density, 348
Added volume, 348, 355
Admittance, 41
Aerodynamic sources, 611–616
aerodynamic dipoles, 612–613
aerodynamic monopoles, 611–612
aerodynamic quadrupoles, 613–614
of fractional orders, 614
influence of source motion, 615–616
Aerodynamic dipoles, 612–614
Aerodynamic monopoles, 611–612, 614
Aerodynamic sound, 611, 643–656. See also Gas flow noise
AFOSHSTD (Air Force Occupational, Safety, and Health Standard), 881
AI, see Articulation index
Air bag deployment noise, 869
Airborne excitation, simultaneous dynamic excitation and, 462–465
Airborne sound (noise):
in high-speed patrol craft, 845–849
outdoors, 121
Airborne whole-body vibration criteria, 881
Air compressors, predicting noise from, 660–662
Air-Conditioning and Refrigeration Institute (ARI), 911
Air-cooled condensers, predicting noise from, 667–668
Aircraft interior noise control, 736
Airflow velocity (HVAC systems), 701–703
fans, 707
near grilles, 701–702
terminal boxes/valves, 708–709
Airfoils:
"singing" of, 640
sound generation by, 639–640
Air Force Occupational, Safety, and Health Standard (AFOSHSTD), 881
Air mounts, 739
Air Movement and Control Association (AMCA), 670
Air pressure ratios, 648
Air spring isolators, 577
Aliasing, 817
active control of, 765–769
in spectral analysis, 54
All zero filters, 743
Almost periodic signals, 44
AMCA (Air Movement and Control Association), 670
American Conference of Governmental Industrial Hygienists (ACGIH), 871, 881, 882
American National Standards Institute (ANSI), 878, 911
American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), 706, 711, 911
American Society of Mechanical Engineers (ASME), 911
American Society of Testing and Materials (ASTM), 911
American system of units, 935–937
Amplification, 583
Amplification at resonance, 583
Analog-to-digital (A/D) converters, 741–742, 766, 767
for ANVC systems, 819–825
sampling process of, 817
Anechoic spaces/rooms, 82, 97–98, 211
ANSI, see American National Standards Institute
Antialiasing filters, 54, 57, 765–769
and ANVC performance, 815
selection of, 817–819
ANVC, see Active noise and vibration control
Applications Handbook (ASHRAE), 711
Architectural acoustics, standards for, 930–931
Architectural noise control in buildings, standards for, 926–931
Area sources, 122
ARI (Air-Conditioning and Refrigeration Institute), 911
ARMA filters, 744
Armed forces sound exposure criteria, 863, 867–868, 874
Articulation index (AI), 203–204
ASHRAE, see American Society of Heating, Refrigerating, and Air-Conditioning Engineers
ASHRAE handbooks, 706, 711
ASME (American Society of Mechanical Engineers), 911
ASTM (American Society of Testing and Materials), 911
Asymptotic threshold shift (ATS), 865, 866
Atmospheric absorption, 136
ATS, see Asymptotic threshold shift
Audio engineers, 345
Audio frequency region, 859–867, 873
Auralization, 190
Autocorrelation function, 60
Autoregressive moving average filters, 744
Autospectral density functions, 55–59
Averages:
linear, 48
running, 49–50
synchronous averaging, 51–52
unweighted, 48, 49
weighted, 48–49
Average A-weighted sound level, 17
Average diffuse-field surface absorption coefficient, 184–185
Average sound level, 16
A-weighted equivalent sound level, 887
A-weighted sound level, 888–891
A-weighted sound (noise) exposure level, 18, 858, 859
coal car shakers, 664
diesel-engine-powered equipment, 668
transformers, 677–678
A-weighted sound power level, 73–75
air compressors, 661
in diffuse field, 81
estimates of, 659
feed pumps, 673
steam turbines, 676
wind turbines, 680
A-weighted sound pressure level, 15–16
long-term, 139
for noise exposure, 858, 859
for outdoor sound, 121
overall, 142–143

B
Background noise:
in classrooms, 196–197
for speech intelligibility, 192–193
Backward-traveling plane wave, 32
Baffled pistons, sound power output of, 35, 36
Balanced noise criterion (NCB) curves, 894, 895
Bandwidths:
of continuous-spectrum sound, 7–9
conversion of, 10–11
half-power, 165
with tapering, 57
Barriers, 132
cooling towers, 667
effectiveness of, 345
for open-plan offices, 202–203
for outdoor sound, 120, 132–135
close to trees, with gaps and slots, 138–139
interaction of ground and, 137–138
and uncertainty of attenuation, 141–142
with transformers, 679

Beams:
damping due to reinforcements, 591–592
infinite:
effective length connecting force and moment impedance, 502
transmission through, 395–397
power transmission to plate from, 410–413
viscoelastic damping of:
three-component beams, 602–606
two-component beams, 599–600
Beam-tracing techniques, 189–190
Bels, 12, 75
BEM (boundary element model), 121
Bending waves:
complete power transmission for, 412–413
reflection loss of, 407–410
in beams, 411–412
and change in cross-sectional area, 407
free bending waves at \(L \)-junctions, 408
in plates with vibration break, 415–416
through cross junctions and \(T \)-junctions, 409–410
through infinite plates, 417–418
Bias error, 59
in coherent output power calculations, 65
in gain factor estimates, 62
in intensity measurement, 105, 106
Blocked pressure, 626, 629
Block's formula for shallow cavities, 641–642
Boilers, predicting noise from, 662–663
Boundaries, damping due to, 591
Boundary conditions, 150, 151, 159
Boundary element method, 156
Boundary element model (BEM), 121
Breakin noise, HVAC, 703–705
Breakin sound transmission loss, 450–451
Breakout noise, HVAC, 703–705
Breakout sound transmission loss, 448–450
Broadband disturbance control, 756–760
Broadband regulation filter, 790–795, 797
BT product, 56
Bucket ladder unloaders, 664
Building Bulletin 93, 193
Butterworth filters, 817–818

C
Cabins:
acoustical performance measures of, 520
defined, 517
Cauer filters, 817–818
Cavities, flows past, 640–643
Ceilings, for mechanical rooms, 710
Central-processing units (CPUs), 825, 827
CHABA, see National Academy of Sciences--National Research Council, Committee on Hearing, Bioacoustics and Biomechanics
Characteristic resistance, 40
Choked jets, 621
Circular effects (with FFT), 50
Clamshell bucket unloaders, 664
Classrooms, 191–197
controlling sound in, 196–197
predicting acoustical quality of, 193–196
speech intelligibility in, 192–193
Closed-loop system identification, 771–776, 827, 828
Closed offices, sound pressure levels in, 190–191
Close-fitting enclosures:
defined, 522
sealed, 531–537
free standing, 531–534
machine-mounted, 535–537
wrappings vs., 552
Coal car shakers, 663–664
Coal crushers, 665
Coal-handling equipment:
diesel-powered, 668
predicting noise from, 663–665
Coal mills and pulverizers, 665
Coal transfer towers, 665
Coefficient of variation, 50
Coherence functions (coherency squared), 58–59
Coherent output power relationship, 64–65
Coil spring isolators, 576
Combination mufflers, 335–338
Combustion noise (gas turbine engines), 624–626
Comparison method (sound power output), 81, 88–89
Compensation filter (feedback control), 792–800
Compensator-regulator architecture (feedback control), 784–785
Complex admittance, 41
Complex impedance, 38–40, 588
Complex sound spectra, 12
Composite partitions, sound transmission through, 451
Composite structures (statistical energy analysis), 456
Composite transmission factor, 461, 462
Comprehensive models (noise prediction), 198
Compression waves, 6, 390–391
and change in cross-sectional area, 407
in plates with vibration break, 414–415
Compressive force, 347–348
Concentric-tube resonator (CTR), 304–311
Concurrent system identification, 771
Conference rooms, 191
Construction equipment, diesel-powered, 668
Continuity equation, 27
Continuous spectra, 2–3, 7–11
Control authority (ANVC), 730
Conversion factors, 939–942
Cooley-Tukey algorithm, 53–54
Cooling towers, predicting noise from, 666–667
Core noise, 624–625, 679
Correlation coefficient function, 60–61
Correlation functions, 60–61
Cosine-squared taper, 55, 57
Coulomb damping, 588
Coupling loss factor, 456
CPUs, see Central-processing units
Critical bands, 900
Critical damping coefficient, 559, 581
Critical damping ratio, 162
Cross-correlation function, 67–69
Cross junctions, reflection loss of bending waves through, 409–410
Cross-sectional area:
of HVAC ducts, 687, 691
power transmission and change in, 406–407
Cross-spectral density (CSD) matrix, 804–808, 810–814
Cross-spectral density functions, 60–61
CSD matrix, see Cross-spectral density matrix
CTR, see Concentric-tube resonator
Current-day sound-level meters, 888
Cylindrical array (microphones), 93, 94, 96
Cylindrical sound sources, 4
D
D/A converters, see Digital-to-analog converters
Damage risk criteria:
for hearing, 858–874
impulse noise, 867–869
infrasound exposure, 869, 870
noise exposure criteria for audio frequency region, 861–867
protection of, 871–874
ultrasound exposure, 869–871
human vibration response, 874–883
exposure guidelines, 877–883
hand-transmitted vibration effects, 877
whole-body vibration effects, 875–877
Damping, 174–176
critical damping ratio, 162
effect of, 561
in HVAC ducts, 701, 703
structural, 561, 579–607
analytical models of, 588
due to boundaries and reinforcements, 591–592
due to energy transport, 592–594
effects of, 579–580
energy dissipation and conversion, 589–590
measurement of, 586–588
measures of, 580–586
models of, 588–589
viscoelastic, 594–607
in two-stage isolation systems, 573, 574
viscous, 561
Damping capacity, 584
Damping ratio, 559, 561, 581
Dashpots, 395
in mass-spring-dashpot system, 557–560
point force impedance for, 394
Data analysis, 43–69
analog, 52
applications, 61
correlation functions, 60–61
deterministic data, 44–45
mean-square values, 47–48
mean values, 47
for periodic excitation source identification, 63–64
for propagation path identification, 66–69
random data, 45–47
for random excitation source identification, 64–66
running averages, 49–50
spectral functions, 52–59
auto (power) spectral density functions, 55–58
coherence functions, 58–59
FFT algorithm, 52–54
line and Fourier spectral functions, 54–55
statistical sampling errors, 50–51, 59
synchronous averaging, 51–52
for system response properties identification, 62–63
types of data signals, 43
weighted averages, 48–49
Data signals, 43
deterministic, 44–45
random, 45–47
Day-night sound (noise) level, 17, 888, 907
dB, see Decibels
Decay, see Sound decay
Decay distance, 603
Decay rates, 582, 587
Decibels (dB):
fractions of, 24
and reference quantities, 12
for sound power expression, 75
and sound pressure level, 15, 17
Deflection, 599
Deformation of solids, 492
Department of Defense (DOD), 907
Deterministic data signals, 44–45
spectral computations for, 55
statistical sampling errors with, 59
DI, see Directivity index
Diesel-engine-powered equipment, predicting noise from, 668–669
Diffuse-field theory, 184–187
Diffuse (reverberant) field, 76–77
control of, 200–201
driving freely hung panel, 457–459
measurement in, 82